
~AD-A12i 968 DEAIDLOCK DETECTION IN DISTRIBUTED COMPUTING SYSTEMS(U i/i
NAVAL POSTGRADUATE SCHOOL MONTEREY CA M T GEHL JUN 82

UNCLASSIFIED .F/G 9/2 N

EhhhhhhhhhhiE
smhhhhhhhhhhh
EhhhhhhhhhhhhI

EhhhhhhhhENDEhhhhhhh1h12.

1. W, 128 12.

-.-.-.--... '...

1601
w W

1.25I -11. 1.6III1 Il .. .-

MICROCOPY RESOLUTION TEST CHART

NATIONAL BURiEAU OF STANOARO$ - 1963 - A

NAVAL POSTGRADUATE SCHOOL
~Monterey California. i

r,,-,r

THESIS
DEADLOCK DETECTION

IN DISTRIBUTED COMPUTING SYSTEMS

by

Michael T. Gehl

June 1982

Thesis Advisor: Dushan Z. Badal

Approved for public release; distribution unlimited

DTIC
ELECTE II
NOV 30 1982

S Too D 82 11 3 0 076

SaculiTY CLAU SIUCATiOa or TWiO PAG ("boo De anew
I I - **, , A~p,6 m ~w 1RZAD INSTRIUCTfIONS|REPORT DOCUMENTATION PAGE EKADR COPSTNCTFORM______________ I_____________/A _i _________ IBErORE COMIPL[CT,,c{_FORMl

1. *EPony OI maN - a. 66Vr Accasagm W. . 1111:01iP116Ts1 CATALOG NuflEn

j"L/.T

1. TITLE (and 8000UI"01 S. TP9 Of NIpO? 0 PERIOO COVENE

DEADLOCK DETECTION IN Master's Thesis F
DISTRIBUTED COMPUTING SYSTEMS June 1982

•. PefmvoaIuaMw ORG. ReOuT uumg_

7. AUTNOWS. 1. COWTUACT O11 GNAwY Wq..wSEi(.

Michael Thomas Gehl r
. 1091O1uswG OA41IIATION@ wmIM AA0 AooDEN Is. PRGm f.iw N. POOjECi TASK

AREA A ItOR UhiT Umlans

Naval Postgraduate School
Monterey, California 93940

1. CONT.OLLING OPrieC 111me AMO 011162 12. 0116POuT OATE

Naval Postgraduate School June 1982
Monterey, California 93940 ,a. wuMU oF*AuS74
1 o4 . aoIT Iw A &1 NVC NAMIr a A6 -U ; flB hw tIinC d- cftithw 00..,,) I& SECUIt Y CLASS. rol f . u.e.-;,

Unclassified
IS&OC ASSIVICAYION10OOWU1GRAOING

I S. oosTMIf UTIOw STAT91MICT (O .1 MOlhe.M)

Approved for public release; distribution unlimited.

1. OsSTRIOUTiON STATMIS[(*1 S. 20ee.1 mtmdM Sleek N, II dthee *erSO I~)e

Is. IUP9tL.EMSNUTY NOTES

19. al ev0WOOD (C~*WU. an i#ie" we~ if ue" e9miIeNU* Wedk let" r o

Distributed Computing Systems, Concurrency Control, Deadlock,
Distributed Database Systems, Computer

AUIT10AC? (CNEDUS e'wi aI *0* wvWi SW Sd Wee 000

With the advent of distributed computing systems, the problem of
deadlock, which has been essentially solved for centralized
computing systems, has reappeared. Existing centralized deadlock
detection techniques are either too expensive or they do not
work correctly in distributed computing systems. Although
several algorithms have been developed specifically for /I
distributed systems, the majority of them have also been shownA

DO n ' 1473 movgoe Oor I v I OsSOL ITE1
IS110T CLSSOI/N11 OFO YO14 PAGE Mh Dil " '

LeWOT CLI. IATO eSWS*SS YWOs S*41eu #%mee

" 20. (Continued)

-to be inefficient or incorrect. Additionally, although
fault-tolerance is usually listed as an advantage ofr distributed computing systems, little has been done to
analyze the fault tolerance of these algorithms. This
thesis analyzes four published deadlock detection algorithms
for distributed computing systems with respect to their
performance in the presence of certain faults. A new
deadlock detection algorithm is then proposed whose
efficiency and fault tolerance are adjustable.,-

An'c!snofl For e7

0

L Av,,t l,', i ty Codes

- .it [and/or
Di it 1 S'Pee al

DD For 1473
5/4 0i02-f14-601 2 2

* Approved for public release; Distribution unlimited

Deadlock Detection in Distributed Computing Systems

by

Michael T. Gehl
Lieutenant Commander, United States Navy

B.S., Iowa State University, 1971

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June, 1982

Author:

Approved by:
Thesis Advisor

geon reader

nar n, a m mputer scence

Dean of Information and Policy Sciences

. + . . . , , : + + ' . ,

ABSTRACT

With the advent of distributed computing systems, the

problem of deadlock, which has been essentially solved for

centralized computing systems, has reappeared. Existing

centralized deadlock detection techniques are either too

expensive or they do not work correctly in distributed

computing systems. Although several algorithms have been

developed specifically for. distributed systems, the majority

of them have also been shown to be inefficient or incorrect.

Additionally, although fault-tolerance is usually listed as

an advantage of distributed computing systems, little has

been done to analyze the fault tolerance of these

algorithms. This thesis analyzes four published deadlock

detection algorithms for distributed computing systems with

respect to their performance in the presence of certain

faults. A new deadlock detection algorithm is then proposed

whose efficiency and fault tolerance are adjustable.

4

' ; ",'"" ';, , ; i ,,;,;. - : :.d-.' ,:".: : ::. :-_ -: ' . . - . :

TABLE OF CONTENTS

I. INTRODUCTION --------------- 6

A. STATEMENT OF THE PROBLEM ---------------------- 6

B. PROPOSED SOLUTION TO THE PROBLEM --- ---- 7

C. STRUCTURE OF THE THESIS----------------------- 8

II. THE CONDITION OF DEADLOCK ------ ---------- 9

III. ANALYSIS OF DEADLOCK DETECTION ALGORITHMS -------- 17

A. THE ALGORITHM OF GOLDMAN ---------------------- 19

B. THE ALGORITHM OF MENASCE-MUNTZ -------- 24

C. THE ALGORITHM OF OBERMARCK -------------------- 28

D. THE ALGORITHM OF TSAI AND BELFORD ---------- 33

E. CONCLUSIONS --------------------------- 39

IV. THE PROPOSED ALGORITHM ---------------------------- 41

A. INTRODUCTION l----------------------------------41

B. THE ALGORITHM 1---------------------51

C. EXPLANATION OF THE ALGORITHM ------------------ 53

D. OPERATION OF THE ALGORITHM -------------------- 56

V. ANALYSIS OF THE PROPOSED ALGORITHM --------------- 58

A. INFORMAL PROOF OF CORRECTNESS ----------------- 58

B. ROBUSTNESS ANALYSIS ----------------- 63

C. PERFORMANCE ANALYSIS -------------------------- 67

VI. CONCLUSIONS ----------- ---------------- 71

:LIST OF REFERENCES ------------------------------------ 73

INITIAL DISTRIBUTION LIST --------------------- 74
'.

.5

I°

..

I. INTRODUCTION

A. STATEMENT OF THE PROBLEM

Deadlock is a circular wait condition which can occur in

any multiprogramming, multiprocessing or distributed

computer system which Uses Locking to maintain consistency

of the data base, if resources are requested when needed and

processes are not assigned priorities. It indicates a state

in which each member of a set of transactions is waiting for

some other member of the set to give up a lock. An example

of a simple deadlock is shown in Figure 1. Transaction Ti

holds a lock on resource R1 and requires resource R2;

transaction T2 holds a lock on resource R2 and requires R1.

Neither transaction can proceed, and neither will release a

lock unless forced by some Outside agent.

Y><Y
Ri R2

Fig. 1 -- A simple deadlock cycle

There have been many algorithms published for deadlock

detection, prevention or avoidance in centralized

multiprogramming systems. The problem of deadlock in those

. +, ¥ + •..

systems has been essentially solved. With the advent of

distributed computing systems, however, the problem of

deadlock reappears. Certain peculiarities of distributed

systems (lack of global memory and non-neglibible message

delays, in particular) make centralized techniques for

deadlock detection expensive and incorrect in the sense that

they do not detect all deadlocks and/or they detect false

deadlocks. Although there have been several deadlock

detection algorithms for distributed systems published, most

of them have been shown to be incorrect.

B. PROPOSED SOLUTION TO THE PROBLEM

In this thesis, a new deadlock detection algorithm for

distributed computing systems is proposed which is low cost

in terms of inter-site messages. The proposed algorithm is

also able to be dynamically modified to make it more robust.

The algorithm assumes a model of transaction execution

wherein a transaction which requires a resource located at

another site will "migrate" to that site to utilize the

resource. The major differences between the proposed

algorithm and existing algorithms are the concept of a Lock

History which each transaction carries with it, and a three

staged approach to deadlock detection, with each stage, or

level, of detection activity being more complex than the

preceding.

M7

.-

C. STRUCTURE OF THE THESIS

In Chapter two, a more detailed discussion of the

deadlock problem and published solutions is presented. For

a reader with little background in this problem, it presents

a brief introduction to the published literature on the

deadlock condition. A reader more familiar with the

condition of deadlock may wish to proceed directly to

Chapter three or four. Chapter three presents an analysis

of four published algorithms with respect to their

robustness in the presence of single site failures and lost

inessages between sites. The four algorithms are executed on

the same example so that they can be easily compared.

In Chapter four, one version of the proposed algorithm

is presented. This version is the least robust version

available, and it is presented for ease of comparison with

existing algorithms. An informal proof of correctness and a

comparison with the algorithm of Obermarck [Ref. 1) is

included in Chapter five. The algorithm is also executed on

the example of Chapter three for comparison of its

robustness with that of the algorithms analyzed in that

chapter. Chapter six discusses several modifications which

can be made to the proposed algorithm to increase its

U robustness. The conclusions reached by the author during

* this research are also presented in Chapter six.

I8

. .

II. THE CONDITION OF DEADLOCK

In the past decade there has been considerable work done

on distributed computer networks and multiprocessor systems.

Both of these are predecessors of distributed computing

systems which are presently a focus of intensive research

and development in academia and industry. Many techniques

for concurrency control, reliability, recovery or security

developed for centralized (or single CPU) systems have been

or are being adopted and adapted for distributed computing

systems. For example, there is a tendency to use locking as

a general synchronization technique in distributed systems

and its special variant, two-phase locking, for distributed

database systems. Up until recently it has been argued that

the frequency of deadlock occurence in existing applications

is so low that the problem of deadlock in distributed

systems is not very important and therefore can be managed

by adopting techniques developed for centralized systems.

However, it has become recently apparent that deadlocks may

be a problem in the future as new applications featuring

large processes and/or many concurrent processes or

transactions arise [Ref. 2]. An example of such an

application is an information utility system which services

concurrently hundreds or perhaps thousands of TV users.

9

Distributed computing systems are characterized by the

absence of global memory and by message transmission delays

which are not negligible. Additionally, processes operating

at the same or different sites can communicate with each

other, and can share resources. If locking is used as the

synchronization technique, then the last two items raise the

problems of deadlock occurence in distributed systems, and

the first two characteristics of distributed systems make it

much more difficult to detect, avoid or prevent deadlock

than in the earlier multiprogramming centralized computing

systems.

Deadlock prevention and avoidance algorithms for a

distributed computing systems are generally not efficient.

Prevention can be accomplished by 1) not allowing concurrent

processing, 2) assigning priorities and allowing preemption,

3) requiring a process to acquire all resources it will need

before it starts, or 4) having no locks. Requiring

sequential execution in a distributed system is a gross

waste of resources. Having prioritized processes will

result in lower-prioritied processes being restarted many

times, with a major degradation in system efficiency.

Dynamic prioritization would be a complex and time consuming

algorithm by itself. A process may be unable to determine

its minimum set of resources, and therefore would have to

acquire the set of all probable and possible resources, even

though it may not need them. In addition, in systems in

10

."

which messages are treated as resources, it is impossible to

determine in advance which messages will be required.

Assuming a non-optimistic concurrency controller, having no

locks may result in database inconsistencies. Similarly:

deadlock avoidance algorithms, which either calculate a

"safe path" [Ref. 3] or never wait for a lock [Ref. 4] are

also inefficient. Safe path algorithms require a non-trivial

execution time, and must be done each time a resource

request is to be granted. Never waiting for a lock is

inefficient when deadlock is a rare occurence. Thus, in

distributed computing systems, it appears that deadlock

detection and resolution algorithms should be investigated

to determine if they are a more efficient method of handling

deadlock.

There are four criteria that any deadlock detection

algorithm for distributed computing systems must meet. They

are 1) correctness, 2) robustness. 3) performance, and 4)

practicality. Correctness refers to the ability of the

algorithm to detect all deadlocks, and the ability to not

detect any false deadlocks. Robustness refers to the ability

of the algorithm to be correct even in the presence of

anticipated faults. This includes the ability to detect

deadlocks even when a site fails or loses communications

while the deadlock detection algorithm is being executed.

The performance of the algorithm refers to its overhead --

the delays between deadlock and detection, CPU time used,

11

number of messages required, etc. Practicality is closely

related to performance, and refers to aspects such as

complexity and cost.

The two major approaches to deadlock detection and

resolution are centralized and distributed deadlock

detection algorithms. Within the distributed class are two

subclasses; 1) all or several sites execute the deadlock

q detection algorithm, and 2) only one site is actually

executing, although the algorithm is resident in all sites

and thus any site could execute the algorithm. It might be

easier to view the algorithms as a continuum: fully

centralized [Ref. 41, hierarchical (Ref. 5], distributed

with a single site at a time executing the algorithm [Ref.

3], distributed with all sites involved in a possible

deadlock executing the algorithm concurrently [Ref. 5), and

distributed with all sites executing the algorithm

concurrently [Ref. 6).

The robustness of several published deadlock detection

and resolution algorithms for distributed systems will be

analyzed in Chapter three. The motivation for this analysis

comes from three facts. First, very few authors

investigated robustness or reliability of deadlock detection

algorithms. Second, reliable deadlock detection and

resolution for upcoming new distributed systems and

applications is an urgent, very important and as yet not

satisfactorily resolved problem. Third, as there can be

12

more than one deadlock being detected by the deadlock

detection algorithm, it is reasonable to expect such an

algorithm to be robust, i.e., to continue executing and

* .detecting all deadlocks even in the presence of failure(s)

which might have in effect broken one of the deadlocks being

detected.

The analysis of the robustness of the deadlock detection

algorithms (DDA) will concentrate on investigating the

impact of some single failures on such algorithms. In

general, the DDA is invoked by two events - either whenever

a process waits for a resource, or after a certain period of

time has elapsed since the last DDA invocation. In the

first case, deadlock is checked for whenever its possibility

appears, and in the second case it is checked for

periodically (regardless of whether its possibility exists).

A variant of the first case is to delay checking for

deadlock for some period of time on the premise that most

transaction waits are transitory and will not become

deadlocked.

The DDA can reside in one, several or all sites of the

distributed computing system. When a triggering event for

DDA occurs, one, several or all sites, depending on the

particular algorithm, will receive information from several

or all sites. Such information consists of "who waits for

whom and where", and it can be represented by arcs of the

wait-for graph, strings, or lists of processes or

13

transactions. Upon receipt of such information one, several

or all sites attempt to reconstruct a global state of the

distributed system, i.e., to generate a true snapshot either

of all waiting processes or of all processes in the system.

The generation of such a true snapshot in the

distributed system is difficult and perhaps even impossible

because of message delays and the lack of global memory.

What is desired, however, is a true snapshot of the deadlock

cycle: the status of other transactions in the system should

be inconsequential to the deadlock detection process. The

generation of such a true snapshot of the deadlock cycle,

usually referred to as a global wait-for graph, becomes more

difficult when we consider the possibility of failures in

the distributed system. Some system mechanisms have been

designed to be robust or reliable. For example, some

concurrency control or synchronization mechanisms for

distributed databases and transaction processing systems are

based on two phase locking, which has been made robust by

incorporating atomicity by using two phase commit protocols.

The two phase commit protocol supports not only the

atomicity of transactions but it also supports the

robustness of locking, i.e., the robustness of concurrency

- control mechanisms. In particular what makes the

concurrency control which uses locking robust is the need to

lock and unlock resources in a robust way, i.e., either all

lock/unlock operations for a given process or transaction

i. 14

occur or none occur. Thus the robustness of concurrency

control supports the atomicity of placing and releasing a

set of locks needed by a process. In other words,

robustness of concurrency control means that no dangling

locks or locked resources are left behind the terminated or

committed process, even in the presence of some failures.

It is interesting to note that although deadlock detection

is a part of concurrency control based on locking, there has

been no attempt to provide for or even to investigate the

robustness of deadlock detection mechanisms. The most

A likely explanation for this is that from the concurrency

control point of view, the inability of the process to lock

a needed resource is an exception to be handled by another

mechanism, a deadlock detection algorithm (DDA).

The proper way to see the DDA is as another transaction

running under the concurrency control mechanism, as it reads

and shares lock tables with concurrency controllers and

other transactions. However, the DDA is a special

transaction which operates on special data it creates solely

for deadlock detection, e.g., wait-for graphs. This data,

called deadlock data, is internal to each invocation of a

DDA transaction and is erased after its execution.

Moreover, deadlock data is not shared by any other DDA

transaction invocations and therefore need not be locked.

This means that the robustness required of DDA transactions

is of a somewhat different kind than the robustness of

15

transactions operating on shared database data. The DDA

transaction therefore does not need to use a two phase

commit protocol to ensure its robustness.

Consider the following informal model of DDA transaction

execution. The DDA is invoked by a concurrency controller

at a site at which a database transaction can not acquire

locks which are being held by another transaction(s). The

DDA transaction executes at one, several or all sites

(depending on the DDA itself and the deadlock topology).

During its execution the DDA transaction should exhibit the

atomicity property, i.e., it either executes correctly or it

does not execute at all. The results of DDA transaction

execution is either of two messages to the concurrency

controller which triggered it:

1) Proceed - because of a) no deadlock
b) deadlock detected but

another transaction was
selected as a victim

2) Abort - because of a) deadlock detected and
you are the victim.

b) DDA transaction failed

In Chapter three, two classes of single failures will be

considered. First, the impact of lost messages will be

analyzed and second, the impact of one site failures or one

site partitions on DDA behavior will be analyzed. The

impact of lost messages is analyzed because 1) not all

distributed systems support reliable delivery of messages,

2) several algorithms treat messages as resources [Ref. 3),

and 3) in some applications acknowledgements cannot be sent.

16

III. ANALYSIS OF DEADLOCK DETECTION ALGORITHMS

* In this chapter, four published deadlock detection

algorithms for distributed computing systems are examined

with respect to the presence of the two classes of failures

(lost messages and site failures) discussed in Chapter two.

Although very few of them have already been shown to be

correct when no failures or errors occur, their robustness

is nevertheless worth analyzing. The assumptions made by

each author will be discussed in the context of how robust

the algorithm is. Each DDA will be analyzed by executing it

in the following environment.

There are four sites in the system, each of which has a

single resource and a single transaction. (These

restrictions merely make the example simpler, they are not

required for the analysis.) The initial system status is

shown in Figure 2. Transaction TI at site A holds resources

R2 and R3 and is waiting for resource R4. Transactions T2

and T3 hold no resources. Transaction T4 at site D holds

resource R4, and is active. It is assumed that the deadlock

detection activity resulting from Ti waiting for R4 has been

completed, so there is currently no deadlock detection

activity in the system. An arrow from one transaction to

another indicates that the first transaction is waiting for

the second transaction to release a lock. An arrow from a

17

resource to a transaction indicates that the transaction has

a lock on that resource, while an arrow from a transaction

to a resource indicates that the transaction desires to put

a lock on that resource. For the algorithms which require

global timestamps, timestamp (TS) tl is assigned to the

Tl<--R2 assignment, t2 to the T4<--R4 assignment, t3 to the

Tl<--R3 assignment, and t4 to the Tl-->R4 request. Now at

some time t6, transaction T4 requests R3, resulting in a

global deadlock TI-->T4-->Tl.

Site A Site B Site C Site D

Ti T2 T3 T4
ITT

Ri R2 R3 I R4
I I I I

II I I

e 4 I

+---.4I

Fig. 2 -- Initial status of deadlock example

In the case of a site failure, the following possibilities

may exist. a) A site can have a transaction involved in a

deadlock but not be involved in deadlock detection, b) a4

site can have a transaction involved in a deadlock and be

involved in detection, c) a site can have a resource

involved in a deadlock and not be involved in detection, d)

a site can have a resource involved in a deadlock and be

involved in a detection, or e) a site can be involved in

deadlock detection but in no way involved in a deadlock.

18

A. THE ALGORITHM OF GOLDMAN

In (Ref. 3], Goldman presents two deadlock detection

algorithms. Only the distributed version will be considered

in this paper. A Process Management Module (PMM) at each

site handles resource allocation and deadlock detection. An

"ordered blocked process list" (OBPL) is a list of process

names, each of which is waiting for access to a resource

assigned to the preceeding process in the list. The last

process in the list is either waiting for access to the

resource named, or it has access to that resource. An OBPL

is created each time a PMM wants to see if a blocked process

is involved in a deadlock. In the distributed algorithm, an

OBPL is passed from a PMM to another PMM which has

information either about a resource or a transaction in the

OBPL which is needed to expand the OBPL. Each PMM adds the

information it knows, and either detects a deadlock, detects

a non-deadlocked state, or passes the OBPL to another PMM

for further expansion. The terms process and transaction

will be used synonymously in the analysis of this DDA. If

several transactions are waiting on one transaction,

multiple copies may be made of the OBPL and sent to each

site having one of those waiting transactions. Processes

can be in either of 2 states, active or blocked (waiting).

A blocked process could be waiting for a database object,

message text from another process or message text from an

operator. A process is active if it is not blocked. In the

19

I.

. . " "-. . .-

algorithm, PX and RX are temporary variables representing a

process or resource. The steps of the algorithm are:

1. Set RX to the value contained in the resource
identification portion of the OBPL. If RX
represents a local resource, go to 2. Otherwise,
go to 8.

2. Verify that the last process added to OBPL is still
waiting for RX. If so, go to 3, otherwise, halt.

3. Let PX be process controlling RX. If PX is already
in OBPL, then there is a deadlock. If not, go to
4.

4. If PX is local to current PMM, go to 5, otherwise
go to 7.

5. If PX is active, there is no deadlock. Discard
OBPL and halt. Otherwise go to 6.

6. Add PX to OBPL and go to 10.

7. Add PX and RX to OBPL. Send OBPL to PMM in site in
which PX resides. Halt.

8. Verify that last process in OBPL still has access
to RX. If not, there is no deadlock, so discard
OBPL and halt. If so, go to 9.

9. If last process in OBPL is active, there is no
deadlock, so discard OBPL and halt. Otherwise go
to 10.

10. Call resource for which last process is waiting RX.
If RX is local, go to 3. Otherwise go to 11.

11. Place RX in OBPL and send OBPL to PMM of site in
which RX resides. Halt.

Figure 3 shows the actions taken at each site during the

execution of the DDA following the request by T4 for

resource R3. The numbers refer to the current step being

20

'I.

executed by the DDA. As can be seen, the algorithm

correctly detected the resulting deadlock, in an environment

of no faults. If, however, a message is lost (in this

example, either the OBPL sent from site C to A, or the OBPL

sent from A to D), the necessary information to detect the

deadlock will be lost, and the algorithm will fail to detect

an existing deadlock.

Site A Site C Site D

10. Create OBPL with
T4. Set RX = R3

3. Ti controls R3,
T1 not in OBPL.

4. Ti not local
7. Add Ti and R3 to

OBPL and send
to site A

1. Set RX R3.
8. TI has access

to R3.
9. TI waiting.
10. Set RX = R4.
11. Add R4 to OBPL,

send to site D.
1. Set RX=R4.
2. TI waiting for

R4.
3. Set PX=T4. T4

already in OBPL,
deadlock detected.

Fig. 3 -- Execution of the Goldman DDA

Goldman's algorithm allows the following types of sites

discussed previously: type b (a site can have a transaction

involved in deadlock and the site is involved in detection),

type d (a site can have a resource held by a transaction

involved in deadlock and the site will be involved in

21

deadlock detection), and type c (a site can have a resource

held by a transaction involved in a deadlock and not be

involved in deadlock detection). A site could also be in

several of the categories above, depending on the complexity

of the system state. For example, site D could be considered

a type b or type d site. If a site of type b (sites A or D

in this example) fails during execution of the DDA, the

behavior could be different depending on the time of the

failure. If the failure occured at site A before site C

sent the OBPL to site A, site C would realize that site A

had failed. The algorithm includes no procedure for this

occurence, so the behavior would be dependent on the

underlying system. If the failure at site A occured after

it received the OBPL, all deadlock detection activity will

cease, because only site A was currently involved in

deadlock detection. A system timeout mechanism would

eventually abort the transactions involved in the deadlock.

A failure at site D would have the same effect as at site A.

If a site of type d (site C in this example) failed, the

time of the failure would again determine the behavior of

the DDA. If the failure occured before site C sent the OBPL

to site A, deadlock detection activity would cease without

deadlock having been detected. If the OBPL had been sent,

however, deadlock detection would continue at sites A and D

(sequentially) with site D detecting a deadlock. The

failure of site C would not have been critical after the

22

OBPL had been sent. The effect of a type c site (site B in

this example) failing would have no effect on the behavior

of the DDA, because the fact that R2 is held by TI is not

used or known by the DDA at any site.

There are essentially two types of OBPL's created by

this DDA. The first type is when a process is waiting, but

is not involved in a deadlock. This OBPL is subsequently

discarded. The second type is one which will eventually

show a deadlock cycle. If there are n transactions involved

in a deadlock cycle, this DDA will create from 1 to n

OBPL's. In this example, only one was created. If the

request by TI for resource R4 hapened simultaneously with

the request by T4 for resource R3, two OBPL's would have

been created which would have resulted in two sites

independently detecting the same deadlock, vice the one site

in this example. Thus the robustness of this algorithm with

respect to a single site failure is related to the ratio of

the number of OBPL's created to the number of transactions

involved in the deadlock. This ratio is determined by the

sequencing or timing of transactions requesting blocked

resources which is of a random nature. A ratio of 1 would

provide the highest degree of robustness. When only a

single OBPL is created, the robustness of the DDA is very

similar to that of a centralized DDA; a single site failure

can stop deadlock detection activity. The robustness of

this DDA can therefore be analyzed but not predicted.
r

I 23

B. THE ALGORITHM OF MENASCE-MUNTZ

In [Ref. 5], Menasce and Muntz presented a distributed

deadlock detection algorithm. Gligor and Shattuck [Ref. 7]

presented a counter example which showed the algorithm to be

incorrect in that it failed in some cases to detect a

deadlock. They also proposed a modification to the

algorithm which they thought would make it correct, but they

felt the algorithm was impractical. In [Ref. 8], Tsai and

Belford show that the algorithm as modified by Gligor and

Shattuck is also incorrect.

The algorithm constructs a Transaction-Waits-For (TWF)

graph at originating sites of transactions which are

potentially involved in the deadlock being detected, and at

sites at which some transaction could not acquire a

resource. Nodes in the WF graphs represent transactions.

An edge (Ti,Tj) indicates that transaction Ti is waiting for

transaction Tj. A non-blocked transaction is a transaction

that is not waiting and is represented in the TWF graph by a

node with no outgoing arcs. A blocked transaction is

waiting for some transaction to finish. A "Blocking set" is

defined as the set of all non-blocked transactions which can

be reached by following a directed path in the TWF graph

starting at the node associated with transaction T [Ref. 5].

A pair (T,T') is a "blocking pair" of T if T' is in the

blocking set of T. A "Potential Blocking set" consists of

all waiting transactions that can be reached from T

24

[Ref. 7]. Sorig(T) means the site of origin of transaction

T. Sk is the site currently executing the algorithm. The

rules which define the enhanced algorithm, as executed as

site Sk, are:

Rule 0: When a transaction T requests a nonlocal
resource it is marked -waiting".

Rule 1: The resource R at site Sk cannot be allocated
to transaction T because it is held by TI, ...,Tk.
Add an arc from T to each of the transactions
TI,...,Tk. If there is then a cycle formed in the
TWF graph, deadlock has been detected. Otherwise,
for each transaction T' in blocking set(T), send
the blocking pair (T,T') to Sorig(T) if Sorig(T)
=/= Sk and to Sorig(T') if Sorig(T') =/= Sk. Form
a list of potential blocking pairs associated with
T.

Rule 2: A blocking pair (T,T') is received. Add an
arc from T to T' in the TWF graph. If a cycle is
formed, then a deadlock exists.

Rule 2.1: If T' is blocked and Sorig(T) =/= Sk. then
for each transaction T" in the blocking set(T),
send the blocking pair (T,T") to Sorig(T") if
Sorig(T') =/= Sk.

Rule 2.2: If T is waiting and Sorig(T) = Sk, then for
each potential blocking pair (T",T) send the
blocking pair (T",T) to Sorig(T") if Sorig(T") =/=
Sk. Then, discard the potential blocking pairs
(T",T) and erase the "waiting" mark of T.

Figure 4 shows the actions taken at each site during the

execution of the DDA following the request by T4 for

resource R3. As can be seen, the deadlock was correctly

' detected by site A, in absence of failures. If the request

message (T4,R3) from site D to site C was lost, however,

deadlock detection activity would cease. If the blocking

pair (T4,TI) from site C to site D was lost, site A would

25

still detect the deadlock. If, however, the blocking pair

(T4,TI) from site C to site A was lost, site D would apply

rule 2. Neither rule 2.1 or 2.2 applies, so deadlock

detection activity would cease.

Site A Site C Site D

TI -- > T4
(T4 requests R3)

0. T4 marked waiting
(T4,R3 received)

1. T4 -- > TI

Blocking set(T)
{TI}

Send (T4,TI) to D
and A.

Potential Blocking
pairs nil.

(T4,TI) received. p(T4,TI) received.

TI -- > T4 T4 -- > Ti

Deadlock Detected.

Fig. 4 -- Execution of the Menasc#-kuntz DDA

This algorithm allows sites of types b, c, d and e,

although this example does not include a site of type e. If

a type b site (one having a transaction involved in the

deadlock and the site is also involved in detection) failed,

in this example site A (or site D), the behavior of the

algorithm is dependent on the time of failure. If site A

failed before receiving the blocking pair (T4,TI), site C

would recognize the failure, but its action is not specified

in the rules of the DDA. Site D would not detect the

26

4

deadlock for the same reason as if the message from site C

to site A was lost. If, however, the failure occured after

• site A received the blocking pair, deadlock detection

activity would continue (at site D) but deadlock would not

be detected. A failure of site D, also a type b site, at

any time, would have no effect on detecting the deadlock in

this example. If a type c site failed (site B), it would

have no effect on detecting the deadlock. If a type d site

(site c) failed, the time of its failure would determine the

behavior of the DDA. If it failed before sending the

4 blocking pair to sites A and D, deadlock detection activity

would cease. If it failed after sending those messages, it

would have no effect on detecting the deadlock.

For this example, this algorithm behaved surprisingly

similarly to Goldman's algorithm in almost all types and

timings of failures. This may just be an anomaly found in

small deadlock cycles, because in longer and more complex

scenarios, it would appear that more sites would be involved

in detection, and that there would be some duplication of

information. As the number of transactions (and resources)

involved in a deadlock cycle increases, more blocking pairs

and potential blocking pairs will be sent to more sites,

i.e., the number of sites detecting the deadlock increases

* with the number of transactions involved in the deadlock and

with the deadlock topology (or complexity). Thus there will

be more chance of a deadlock being detected, as more

27

parallel detection activity will be in progress. It

appears, then, that as the site and complexity of deadlock

increases, the robustness of this algorithm increases.

However, as pointed out by Gligor and Shattuck, the effect

of rule 2.2 discarding information too early may have some

impact on the increased robustness.

C. THE ALGORITHM OF OBERMARCK

Obermarck's distributed algorithm [Ref. 1] constructs a

transaction-waits-for (TWF) graph at each site. Each site

conducts deadlock detection simultaneously, passing

information to one other site. Deadlock detection activity

at a site may become temporarily inactive until receipt of

new information from another site. Obermarck states that in

actual practice, synchronization (not necessarily precise)

between sites would be roughly controlled by an agreed-upon

interval between deadlock detection iterations, and by

timestamps on transmitted messages. qodes in the graph

represent transactions, and edges represent a transaction-

waits-for-transaction (TWFT) situation. A "String' is a

list of TWFT information which is sent from one site to one

or more sites. In the model of transaction execution used by

Obermarck, a transaction may migrate from site to site, in

which case an "agent" represents the transaction at the new

site(s). A communication link is also established between

agents of a transaction. These communication links are

28

represented by a node called "External." An agent which is

expected to send a message is shown in the WF graph by EX--

>T, while an agent waiting to receive is shown by T-->EX.

Although Obermarck's algorithm includes the resolution of

deadlocks, only the detection part will be considered in

this analysis. Transaction ID's are network unique names for

transactions, and are lexically ordered. (For example, T1 <

T2 < T3). The steps performed at each site are:

1. Build a TWF graph using transaction to transaction
wait-for relationships.

2. Obtain and add to the existing TWF graph any
"strings" transmitted from other sites.

a. For each transaction identified in a string,
create a node in the TWF if none'exists in this
site.

b. For each transaction in the string, starting
with the first (which is always "external"),
create an edge to the node representing the next
transaction in the string.

3. Create wait-for edges from "external" to each node
representing a transaction's agent which is
expected to send on a communication link.

4. Create a WF edge from each node representing a
transaction's agent which is waiting to receive
from a communication link, to ;external."

5. Analyze the graph for cycles.

6. After resolving all cycles not involving
"external", if the transaction ID of the node for
which "external" waits is greater than the
Transaction ID of the node waiting for "external",
then

a. Transform the cycle into a string which starts
with "external", followed by each transaction ID

29

in the cycle, ending with the transaction ID of
the node waiting for "external".

b. Send the string to each site for which the
transaction terminating the string is waiting to
receive.

In his proof of correctness, Obermarck shows how the

algorithm can detect false deadlocks because a string

received at a site may no longer be valid when it is used.

He discusses two methods of handling false deadlocks; treat

them as actual deadlocks(if they don't occur too often), or

verify them by sending them around the network and have each

site verify them.

A B

TI####### |1/// { Ti T2
##

• # #

C # D#

T1 T3 00#0###{>T1 ---- >T4

Fig. 5 -- Initial conditions for the Obermarck DDA

Figure 5 shows a global picture of the system, including

the communication links established between agents, for the

initial conditions of this example. The agents of T1 at

sites B and C have performed work (used R2 and R3), and are

waiting for the next request from T1 at site A. T1 at site

A is waiting for its agent at site D, which is in resource

30

wait for T4. Figure 6 shows the actions of this algorithm in

an environment of no errors. As can be seen, it

successfully detects the deadlock.

Site A Site B Site C Site D

T4 request4 R3
An agent of

T4 is formed

1,3,4: each site starts detection and builds WF graph.

T1-->EX T-->EX T1-->EX-->T4 EX-->T1-->T4

5: list elementary cycles

T1-->EX--T1 EX->T4->Tl->EX EX->TI->T4->EX

6: form string
(EX,T4,T1)

2Send to A.. 2: $-T4<-.

T1--->EX

6: Form string
(EX,T4,T1)
Send to D.

2:

EX-->Tl-->T4

5: Deadlock detected

Fig. 6 -- Execution of the Obermarck DDA

Obermarck assumes that messages sent are received. This

is essential to the correctness of this DDA, because it is

31

1.

easy to see what happens if a message is lost. If the

string (EX,T4,T1) from site C to A, or from A to D were

lost, deadlock detection activity would cease without

detecting the deadlock. The use of agents to represent

transactions which have migrated to other sites allow this

DDA to have nodes of types a or b, if 'agents' is

substituted for 'transactions' in the definitions at the

beginning of this section. Site B would be an example of a

type a site, while the other three sites would all be type b

sites.

A failure in site B would have no effect on the behavior

of the DDA. A failure at sites A, B or D would either have

no effect, an undetermined effect, or cause deadlock

detection activity to cease, depending on the time of the

failure. For example, if site C failed before sending the

string (EX,T4,T1) to site A, deadlock detection activity

would cease. If site A (or D) failed before the string

(EX,T4,T1) was sent to them, the transmitting site would

recognize the failure, but its action in that eventuality is

"4 not included in the steps of the DDA. If site C failed

after sending the string, the detection activity would

continue, and the deadlock would be detected.

This DDA appears to be potentially more robust than the

previous two. Each site contains and retains more

information in its WF graph, and all sites start detection

*! activity simultaneously, and potentially stay involved for

32

the entire detection process. The use of the lexical

ordering of nodes was for optimization of the number of

messages transmitted. If this constraint were lifted, the

*. strings would be sent to all sites involved from all sites

in which a cycle existed. In this example, this would have

allowed sites A and D to simultaneously detect deadlock.

The DDA would be clearly more robust, but the overhead would

be greater. In its existing form, this DDA's robustness is

similar to the previous algorithms because it is essentially

sequentially detecting the deadlock.

D. THE ALGORITHM OF TSAI AND BELFORD

In [Ref. 8], Tsai and Belford present a distributed

deadlock detection algorithm. They utilize a "Reduced

Transaction-Resource" (RTR) graph, which contains only a

subset of the transaction resource graph, but has all

relevent TWF edges. Nodes in the RTR graph can be

transactions or resources. The algorithm uses a concept the

authors call a "reaching pair", which is the basic unit of

information passed from site to site. If a path TiTj...Tn

can be formed by following TWF edges, and if there is a

request edge (Tn,Rm), then Ti "reaches" Rm, and (Ti,Rm) is a

"reaching pair." Five types of messages are sent between

sites: reaching messages, nonlocal request messages,

allocation messages, release-request messages, and releasing

messages. The non-local request messages include a list of

33

i:

all resources currently held by the requesting transaction.

Five different types of edges are distinquished in the RTR

graph: requesting edges, allocation edges, TWF edges,

resource reaching edges and transaction reaching edges. A

global timestamp is also used to establish an ordering of

events. This timestamp is used on allocation, request and

reaching messages, and on allocation and reaching edges in

the RTR graph. The notation used in the algorithm is:

TS(M): timestamp of a message
TS(C): current system time
TS(A): timestamp of an allocation edge
TS(R): timestamp of a reaching edge
Sorig: Site of origin
=/= : not equal to

The steps of the algorithm (as executed at site Sk) are:

Step 1: (A transaction T enters the system requesting a
nonlocal resource R) Add request edge (TR) to RTR
graph. Send request message (T,R',R,TS) to
Sorig(R), where R' is the set of all resources
allocated to T, and TS(M) = TS(C). R' has each
TS(A) attached, and R' is empty if T holds no
resources.

Step la: (A transaction T releases a nonlocal resource RI
Erase edge (R,T) in the RTR graph. Send a
release-request message(R,T) to Sorig(R).

Step 2: (A transaction T enters system requesting local
resource R) Go to step 4.

Step 2a: (A transaction T releases a local resource R) Erase
edge(R,T) in RTR graph. If there is any
transaction T' waiting for R, then begin

Add allocation edge (R,T') to RTR graph with
TS(A) TS(C). Send allocation message
(R,T',TS) with TS(M) = TS(C) to Sorig(T') if
Sorig(T') =/= Sk. end.

34

L
°

1

Step 3: (A request message (T,R',R,TS) is received) Add
allocation edges (Ri,T) for each Ri in R' to RTR
graph. Go to step 4.

Step 3a: (A release-request message (R,T) is received)
Erase allocation edge (R,T) in RTR graph. Send
releasing message (R,T) to Sorig(T). If there is
any transaction T' waiting for R, then begin

Add allocation edge (R,T') to RTR graph with
TS(A) TS(C). Send allocation message
(R,T',TS) to Sorig(T') if Sorig(T') =/= Sk.
end.

Step 4: If R is not held by any transaction, then begin
Add allocation edge (R,T) with TS(A)=TS(C) to
RTR graph. If Sorig(T) =/= Sk, then send an
allcation message (R,T,TS) with TS(M)=TS(C)
to Sorig(T). end.

else begin
Add requesting edge (T,R) to RTR graph.
Suppose R is held by transaction T'. Add edge
(T,T') to RTR graph. If there is a cycle,
deadlock has been detected, else go to step
5. end.

Step 5: {reaching message generation step) If there are
two edges (T,R) and (T,T') added to the graph, and
if TT'...T" is any path obtained by following the
TWF and transaction reaching edges, then set X =R"
if T" has outgoing edge to R", else set X R.
For all transaction Ti in RTR graph reaching X via
T, do be gin

If Ti holds any resource R' with Sorig(Ti)
=/= Sorig(R') and Sorig(R') =/= Sk, then send
a reaching message (Ti,X,TS) to Sorig(R').
If Sorig(Ti) =/= Sk and Ti =/= T, then send a
reaching message (Ti,X,TS) to Sorig(Ti). If
Sorig(Ti) =/= Sk and Ti = T and X = R" then
send a reaching message (Ti,X,TS) to
Sorig(Ti). The TS in the reaching message is
set to TS(C) if triggered by a local request,
and set to TS(M) of the nonlocal request or
reaching message otherwise.

Step 6: (An allocation message (R,T,TS) is received) If R
is an entry in the graph, then begin

Erase allocation edge (R,T') and all reaching
edges (T",R) with TS(R) < TS(M) and the
corresponding TWF edge (T,T') and transaction
reaching edges (T",T'), if they exist, where
T' =/= T. Change requesting edge (T,R) to

35

allocation edge (R,T) with TS(A) = TS(M) if
(T,R) exists, and for each resource reaching
edge (T",R), add the transaction reaching
edge (T",T). If Sorig(T) = Sk, wake up
transaction T. end.

Step 6a: (A releasing message (R,T) is received) If
Sorig(T) = Sk, wake up transaction T.

Step 7: (A reaching message (T,R,TS) is received! If there
exists an allocation edge (R,T') in the graph with
TS(M) < TS(A) and T' =/= T, then skip this step,
else begin

Add resource reaching edge (T,R) to the RTR
graph. If R is held by transaction T', then
add the transaction reaching edge (T,T') to
the graph. If there is a cycle in the graph,
there is deadlock (go to step 8), otherwise
go to step 5. end.

Step 8: (a deadlock has been detected) Take appropriate
action.

Figure 7 shows the starting WF graphs and the actions of

the DDA resulting from the request by transaction T4 for

resource R3. An important item to note is that as soon the

request is made, step 1 adds sufficient information to the

WF graph to detect a deadlock, but does not check for

deadlock, so the request is sent to site C and the algorithm

continues. The obvious thing to do would be to add a check

for a deadlock cycle in step one, but on closer analysis,

this check may lead to detection of false deadlocks (if, for

example, Ti had just released R3 but the message had not yet

been received by site D•) Therefore the algorithm in its

present form will be analyzed. The only message sent by

this algorithm in this example is the request message

36

(T4,{R4},R3,t6). If it was lost, the current algorithm

would cease detection activity without detecting deadlock.

In this instance, if the algorithm checked for deadlock in

step 1, it would have been detected with no messages

required.

Site A Site B Site C Site D

TI<--R2 T1<--R2 TI<--R3 T4<--R4
I tt

--- R3 !-->R4 +-->R4 T ---

+--->R4It->R
--->R3

(T4 requests R3)
1: add (T4,R3)

send (T4,{R4},R3,t6)
to C.

-+-T4<--R4 toC

tTI---+

.----- R3

3: add (R4,T4)
4: add (T4,R3)

add (T4,TI)
DEADLOCK DETECTED

TI<--R3<-+
I I
! I
.+-->R4->T4

Fig. 7 -- Execution of the Tsai-Belford DDA

- For this DDA, sites can be of type b, d or e. Sites A

and D are type b and sites B and C are type d. This example

has no type e sites, but for other examples, step 5 of the

algorithm could send reaching messages to sites not involved

at all. Those sites would execute a step or two of the

37

algorithm, but not be intimately involved in the actual

deadlock detection. In this example, a failure of sites A

or B (types b and d respectively) would have no effect on

the detection of the deadlock. The effect of a failure of

site C before the reaching message was sent to it cannot be

determined because the DDA includes no instructions for that

event. A failure of site C after receiving the reaching

message would result in a cessation of detection activity.

If the algorithm were modified to include a cycle check in

step 1, a failure of site C at any time would have no effect

on deadlock detection. The timing of the failure would also

determine the behavior of the DDA if site D failed. If site

D failed before sending the request message, detection

activity would cease, while if the message had been sent,

deadlock would still be detected.

For this example, this DDA appears to be about the same

level of robustness as the other algorithms, except that

each site contains and retains more information than in

other DDA's. This indicates that it should be more robust.

The algorithm in the case of this example was able to detect

the deadlock with only the resource request message. As

deadlock cycles become more complex, it appears that this

algorithm will also become more robust, even more so than

Obermarck's, because this DDA retains more information, and

it will send reaching messages to any site potentially

involved in the deadlock. Detection activity will occur

38

simultaneously in those sites receiving reaching messages.

The impact of the inclusion of a cycle detection in step 1

may have adverse effects on the correctness, but it might

greatly enhance the robustness of the DDA.

E. CONCLUSIONS

The algorithms discussed in the previous section can be

loosely ranked by their robustness. Goldman's algorithm is

the least robust, because it is always executed sequentially

(unless the requests occur simultaneously, as discussed

previously). Thus it is always dependent on a single node.

Obermarck's algorithm starts deadlock detection

simultaneously at all sites, and subsequently passes

information in a lexical manner because of the message

optimization. For the example used for the analysis, this

resulted in a sequential detection, although for larger

deadlock cycles, it may have some parallel detection

activity occuring. The Menasce-Muntz algorithm starts

detection at the site where the deadlock occured, and

deadlock detection is subsequently conducted at sites which

, re potentially involved. In the Tsai-Belford algorithm,

deadlock detection can occur simultaneously at all sites

potentially involved in the cycle. It appears more robust

than the Menasce-Muntz algorithm because more information is

held at each site.

39

The above analysis supports the rather obvious

conclusion that a deadlock detection algorithm's robustness

is directly related to its cost. The Tsai-Belford algorithm

appears more robust than Obermarck's algorithm, for example,

but it maintains larger WF graphs at each site, and is

invoked each time a resource is requested, in order that the

WF graphs contain sufficient information.

For the example used to analyze the four algorithms in

Chapter three, the behavior of each of those algorithms in

the presence of errors is almost identical. Because the

deadlock cycle only involved two transactions, those

algorithms which are potentially more robust in the presence

of larger cycles, did not have time to demonstrate their

robustness. In other words, for a short deadlock cycle, all

the algorithms converged within approximately the same

length of time (two or three iterations.) Short cycles of

length two or three are more probable in existing

applications, so all the above algorithms are approximately

equally robust in current applications. In future

applications (information utility programs, for example),

however, a much higher probability of more complex deadlock

cycles is expected, which will require a more robust DDA.

Conversely, however, as the number of transactions (and

F sites) increases, it will be important to use a minimum cost

DDA.

40

IV. THE PROPOSED ALGORITHM

A. INTRODUCTION

The proposed algorithm assumes conventional distributed

two-phase locking and two-phase commit protocols as

described in [Ref. 4]. Two types of locks are supported;

Exclusive Write(W) and Shared Read(R). These locks, once

placed, are held until the transaction commits or aborts.

Additionally, there is an Intention Lock (I) which indicates

that a transaction wishes to acquire a lock on a resource,

either to modify it (IW) or to read it (IR). Intention

Locks are placed on a resource when an agent is created at a

site of a locked resource which it requires, or when a

rresource at the same site is requested but is already locked

by another transaction. These Intention Locks are not the

same as the Intention Modes used by Gray when he discusses

hierarchical locks in [Ref. 4]. Gray uses the Intention

mode to "tag" ancestors of a resource in a hierarchical set

of resources as a means of indicating that locking is being

done on a "finer" level of granularity, and therefore

preventing locking on the ancestors of the resource.

A transaction T also modifies its lock entry of the

resource it has last locked by adding information that

specifies which resource T will attempt to lock next. This

modification is made as soon as T can determine which

41

resource it will require for its next execution step. The

rules for locks are the same as for conventional two-phase

locking; any number of transactions or agents may

simultaneously hold Shared Read locks on a particular

resource, but only a single transaction or agent may hold an

Exclusive Write lock on a resource. Any number of Intention

Locks (IW or IR) may be placed on a resource, which means

that any number of transactions may wait for a resource.

Each site must therefore have some method for determining

which transaction will be given the resource when it becomes

free, such as FIFO (First In, First Out.)

The locks can be of any granularity. It must be

remembered that a very small granularity (for example,

individual fields within a record) will result in very few

conflicts, but the cost of the additional locks required to

lock smaller fields increases. Conversely, a large

granularity (possibly complete records) will result in many

locking'conflicts, but little cost due to the actual locking

of resources. The proposed algorithm does not require a

specific level of lock granularity.

The Lock History (LH) of a transaction is a record of

all types of locks on any resources which have been

requested or are held by that transaction. Each resource ID

contains a site identifier. An example of a Lock History for

transaction Ti is LH(T1): {W(R3C), W(R2B), R(R1A)}. This LH

shows that Ti holds a Write Lock on resource R3 at site C, a

42

Write Lock on resource R2 at site B, and a Read Lock on

resource Ri at site A.

The information contained in a Lock Table for a resource

includes a) the transaction or agent ID and its Lock

History, b) the type of lock and c) the resource (and type

of lock) which that transaction holding this lock intends to

lock next. The field containing the current lock will be

referred to as the "current" field of the Lock Table, and

the field containing the future intentions of that

transaction holding the "current" lock will be called the

"Next" field. For clarity, Lock Histories will be shown as

separate entities. An example of a Lock Table is LT(R2B):

TI{W(R2B), IW(R3C)}; T2fIW(R2B)}. The Lock Table for

resource R2 at site B shows that Ti holds a Write Lock on

R2, and that T2 has placed an Intention Write Lock on R2.

Ti has also indicated that it intends to place a Write Lock

on resource R3 at site C.

The proposed algorithm also assumes a distributed model

of transaction execution where each transaction has a Site

of Origin (Sorig), which is the site at which it entered the

system. Whenever a transaction requires a remote resource,

(a resource at a site other than the site it is currently

at), it "migrates" to the site where that resource is

located. Migration consists of creating an "agent" at the

new site. The transaction agent then executes, and may

either create additional agents, start commit or abort

43

actions, or return execution to the site from which it

migrated. This transaction model is consistent with recent

literature [Ref. 1, 2). When a transaction migrates, it

brings with it certain information from its previous site.

This includes its Lock History and a condensed version of

that site's latest Wait-For Graph, which will be termed a

Wait-For String (WFS).

A Wait-For Graph (WFG) is constructed by the deadllock

detection algorithm, using the Lock Histories of

transactions which are possibly involved in a deadlock

cycle, any time a transaction or agent attempts to place a

lock on a resource which is already locked, or when it

determines that a remote resource will be required. There

are two types of nodes in the WFG; transactions (or agents)

and resources. A directed arc from a resource node to a

transaction node indicates that the transaction has a lock

on the resource, while a directed arc from a transaction

node to a resource indicates that the transaction has placed

an Intention Lock on that resource. A directed arc from a

transaction node to another transaction node indicates that

the first transaction is waiting for the second transaction

to release a lock on a resource.

The WFS is a list of transaction - waits - for -

transaction strings (obtained from the site's WFG), in which

each transaction is waiting for the next transaction in the

string, and the Lock History for each transaction in the

44

string. For example, the WFS [TI[W(R2A), IW(R3B)},

T4{W(R3B)}] shows that Ti is waiting for T4, and each

transaction's Lock History is in brackets. A transaction

may also bring along other information such as a metric

representing its execution cost, but such information is not

included in this thesis as it is outside the primary

function of the proposed deadlock detector. Each

transaction or agent will have a globally unique identifier

which indicates its Site of Origin.

Agents can be in any of three states; active, blocked

(waiting), or inactive. An inactive agent is one which has

done work at a site and created an agent at another site or

returned execution to its creating site, and is now awaiting

further instructions, such as commit, abort or become active

again. A blocked transaction is one which has requested a

resource which is locked by another transaction. An active

agent is one which is not blocked or inactive. To allow

concurrent execution, a transaction may have several active

agents.

Each site in the system has a distributed deadlock

detector, which performs deadlock detection for transactions

or agents at that site. Several sites can simultaneously be

working on detection of any potential deadlock cycle.

The basic premise of the proposed algorithm is to detect

deadlock cycles with the least possible delay and number of

inter-site messages. Based on the findings by Gray and

45

others [Ref. 9) that cycles of length 2 occur much more

frequently that cycles of length 3, and cycles of length 3

occur much more frequently that cycles of length 4, and so

on, the proposed algorithm uses a staged approach to

deadlock detection. There are basically two types of

deadlock cycles to be considered; a) those which can be

detected using only the information available at a site, and

b) those which require inter-site messages to detect. In

the proposed algorithm, the first type has been divided into

two levels of detection activity. Because the proposed

algorithm checks for possible deadlock cycles every time a

remote resource is requested or a local resource is

requested but already locked, the level one check should be

as quick as possible. If the requested resource is still

not available "after X units of time" CRef. 4), then the

probability of a deadlock has increased sufficiently to

justify a more complex and time-consuming check in level

two. Therefore the proposed algorithm has three levels of

deadlock detection activity. Levels one and two correspond

to the first type of deadlock cycle, while level three

corresponds to the second type. The first level is designed

to detect cycles of length 2, although certain more complex

deadlock cycles could be detected, depending on the topology

of the deadlock cycle. This level uses only information

available in the Lock Table of the requested resource if the

resource is local, or the last locked resource if the

46

l

requested resource is at another site, and in the

transaction Lock Histories of the transactions in that Lock

Table at the site. Due to the information contained in the

"Next" field of the Lock Table and in each transaction's

Lock History, this level of detection activity can detect

deadlock cycles of length 2 (and possibly longer) involving

one or two sites.

As an example, let transaction Ti at site A Write Lock

resource Ri. Let transaction T2 at site B Write Lock

resource R2. These locks would be placed in the Lock Tables

of the respective resources, and also in the Lock Histories

for the respective transactions. Transaction Ti now

determines that it must lock resource R2, so it places that

information in the "Next" field of its lock entry of

resource Ri and in its- Lock History. It then migrates to

site B, where its agent places an Intention lock in the Lock

Table for R2, and then becomes blocked, waiting for resource

R2 to be released. A level one check is made using the Lock

Table of R2, showing no deadlock cycles. Now transaction T2

determines that it requires a Write Lock on resource Ri. It

places that information in the "Next" field of its lock

entry in the Lock Table of R2 and in its Lock History.

Before T2 migrates to site A, level one of the deadlock

detection algorithm looks at the Lock Table for R2 and

notices that T1 is waiting for R2. It therefore combines

47

the Lock Histories of all transactions holding or requesting

locks on R2 (Ti and T2) into a WFG, and detects a deadlock.

In this example, the cost of creating an agent of T2 at

site A was saved by a very quick check for cycles of length

two. Inasmuch as the majority of deadlocks occurring will

be of this length, this simple and inexpensive check will

detect the majority of deadlocks as they occur. If, in the

example just given, transactions T1 and T2 had

simultaneously determined the need for locks at the other

site, the initial level one check would not have been

performed because no transactions were waiting for those

resources. Both transactions would have migrated and placed

Intention Locks at the new sites. A level one check is then

made at each site when it is noted that the requested

resource is not available. Each site constructs a WFG from

the Lock Histories of the transactions in the Lock Tables of

the requested resources, and each site will detect a

deadlock cycle in the WFG without any inter-site messages.

Even if the first level of detection activity fails to

detect a deadlock cycle, there can still be a more complex

deadlock cycle in existence. The second level of detection

activity requires more time because it constructs a WFG

using all Lock information available at the site, i.e., Lock
i information from all resource Lock Tables at the site. If

we assume that more complex deadlock cycles are

comparatively rare, it is advantageous to "wait X units of

48

time" [Ref. 4] before starting the second level of

detection activity. If a transaction is still waiting to

acquire a lock after these X units of time, the probability

of a more complex deadlock cycle existing has increased

sufficiently to justify a more comprehensive check. As

previously mentioned, the second level still attempts to

detect a cycle using information available at the same site

where the transaction is waiting for a resource. Each site

maintains the latest WFS brought from each site by

transactions which have migrated to that site. In addition,

each transaction has a copy of its Lock History. The Lock

Histories of all blocked or inactive transactions at the

site, and the Lock Histories from all transactions in the

WFSs from other sites are combined into a new Wait-For

Graph. If no deadlock is detected, it can either be because

a) there is no deadlock, or b) there is a deadlock but this

site does not have enough information to detect it. Case a)

can occur either if all transactions being waited for are

currently at that site and active, or have migrated but are

still active. If all the transactions being waited for are

currently at that site and active, deadlock detection

activity can stop, because there can be no cycle in the WFG.

If, however, a transaction has migrated to another site and

therefore the current site does not have sufficient

information to detect whether that transaction is active or

blocked, this site's information must be shared with other

49

sites to determine if 6he transaction which has migrated is

active or is blocked and involved in a deadlock cycle. This

sharing of information constitutes the third level of

detection activity.

Because level three involves inter-site communication,

it might be advantageous to wait Y units of time before

continuing in order to increase the probability of the wait

condition being an actual deadlock. After Y units of time,

when the DDA is ready to continue, the 'JFG is condensed into

a WFS. The WFS is then sent to other sites. The sites to

which the WFS is sent can vary. In the version presented

here, it is sent to the site to which the transaction being

waited for has migrated. Other possibilities are discussed

in Chapter six. When a site receives a WFS, it substitutes

the latest Lock Histories for any transaction for which it

has a later version. It then constructs a new WFG and

checks for cycles. If a cycle is found, it must be

resolved. If any transactions are waiting for other

transactions which have migrated to other sites, the current

site must repeat the process of constructing WFG's and

sending them to the sites to which the transactions being

waited for have migrated. If the transactions being waited

for are at this site and active, deadlock detection activity

can cease. Level three activity will continue until a

deadlock is found or it is discovered that there is no

deadlock.

50

The following definitions are used in the description of

the algorithm:

IL -- Intention Lock
W(x) -- Exclusive Write lock on resource x
R(x) -- Shared Read lock on resource x
IW(x) -- Intention Lock(Write) on resource x
IRWx - Intention Lock(Read) on resource x
Sorig(T) -- Site or Origin of transaction T
LT(R) -- Lock Table for resource R
LH(T) -- Lock History for transaction T
"Next" -- Field in Lock Table reflecting the

resource a transaction intends to
acquire next

"Current" -- Field in Lock Table reflecting the lock
currently held by a transaction

B. THE ALGORITHM

1. [Remote resource R requested or anticipated by
transaction or agent T)

A. Place appropriate IL entry in "next" field of
the Lock Table of the current resource (the last
resource locked by T,if any) and in LH(T).

B. (Start level 1 detection activity at current
site). If another transaction is waiting for the
last resource locked by T, construct a Wait-For
graph from the Lock Histories of the transactions
holding and requesting that resource and check for
cycles.

C. If no cycles are detected or if no transactions
are waiting:

1) Collect LH(T) and the latest WFS fr ,m the
current site, and have an agent created at the site
of the requested resource.

2) Stop

D. If a cycle is detected, resolve the deadlock

2. (Local resource R requested)

51

A. If resource R is available: {Lock it}

1) Place appropriate lock in Lock Table -of
-(resource R and in LH(T).

2) end

B. If resource is not available: {Start level 1
detection activity)

1) Place appropriate IL in Lock Table of
resource R and in LH(T).

2) Construct a WF Graph from Lock Histories of
all transactions holding and requesting R, and
check for cycles.

3) If there are no cycles, and if the
transaction holding the lock on R is still at
this site and active, stop. If there is a
cycle, resolve the deadlock.

4) If the transaction holding the lock on R has
either migrated to another site, or is still at
this site but is blocked by another transaction
which has migrated to another site, delay(tl).

5) If resource is now available:

a) Remove IL from Lock Table and LH(T)

b) Go to step 2A

6) If resource is not available: [Start level 2
activity)

a) Construct a WFG using the Lock Histories
of the transactions in the WFSs which have been
sent from other sites by level three detection
activity, or brought by transactions which have
migrated to this site, and the Lock Histories of
all blocked or inactive transactions at this
site and check for cycles.

b) If any cycles are found, resolve the

deadlock.

c) If no cycles are found, Delay(t2)

d) If the requested resource is now
available, go to step 2A

52

d i i i l bg i i -" i

e) If the transaction being waited for is at
this site and active, stop.

f) If the resource is still not available,
go to step 3 {Start level 3 detection activity}.

3. (Wait-For Message Generation}

A. [Start Level 3 detection activity) Construct a
WFS by condensing the latest WFG into a list of
strings of transactions waiting for transactions.
Add the Lock Histories of each transaction in the
string.

B. Send the WFS to the site to which the
transaction being waited for has gone.

4. {Wait-For Message Received}

A. (Start level 3 detection activity) Construct a
WFG from the Lock Histories of the transactions in
the WFS's from other sites, and from the Lock
Histories of all blocked or inactive transactions at
this site. (Use the latest WFS from each site.)

B. If this WFG shows that a transaction which is
being waited for has migrated to another site, go to
step 3. (Repeat WFS Generation)

C. If the transaction being waited for is active,
and has not indicated by an Intention Lock that it
will attempt to acquire a resource which may result
in a deadlock, discard the WFG and stop.

D. If the transaction being waited for is active
but has indicated by an Intention Lock that it is
going to a site which will cause a deadlock, or if a
cycle is found, resolve the deadlock.

C. EXPLANATION OF THE ALGORITHM

Step 1. This step is executed any time a transaction

(or agent) T requests a remote resource, or when it

determines that it will require a remote resource. The Lock

53

Table of the resource which the transaction is currently

using (or has just finished with) is checked to see if any

other transactions are waiting (i.e., have placed Intention

Locks) for that resource. If so, the Lock Histories of all

transactions requesting and holding the resource are

combined into a WFG and a check for cycles is made. If no

cycle is found, T collects the WFS formed from the WFG at

that site and causes an agent to be created at the site of

the requested resource.

Step 2. This step is executed each time a local

resource is requested, either by an agent (transaction)

already at that site or by a newly created agent. If the

resource is available, appropriate locks are placed and the

resource granted. If the resource is not available,

Intention Locks are placed in the Lock Table of the

requested resource and in the Lock History of the requesting

transaction, a WFG is constructed using only the information

in the Lock Table of the requested resource and the Lock

Histories of the transactions holding or requesting that

resource, and a quick level one check is made for possible

deadlock cycles. If no cycles are found, the algorithm

waits for a certain period of time before continuing. This

should allow the transaction which holds the resource to

complete its work and release the resource. If the resource

is not available after this delay, the chance of a deadlock

is higher, so the algorithm shifts to another level of

54

detection. It now uses the Lock Histories from each blocked

or inactive transaction at the site, as well as from any

WFS's from other sites which have been brought by migrating

transactions. If there are no cycles in this graph, and the

resource is still not available after a second delay (also

tunable by the system users), the possibility of deadlock is

again much greater, but the current site has insufficient

information to detect it. Therefore the proposed algorithm

progresses to the third level of detection (step 3).

Step 3. The Wait-For message generated by this step

consists of a collection of substrings. Each substring is a

list of transactions each of which is waiting for the next

transaction in the substring. The substring also contains

the resources Locked or Intention Locked by each transaction

in the substring. A local timestamp will be affixed to this

message so that the receiving site will be able to determine

which is the latest information from any site.

Step 4. In this step, the Lock Histories of the

transactions in the WFS's previously received from other

sites, and the Lock Histories of any blocked or inactive

transactions at this site are added to the Wait-For

information contained in a received WFS. If there is still

insufficient information to detect a cycle (a transaction

being waited for has migrated to another site), another

iteration must be performed, so the algorithm repeats by

transferring to step 3. If a cycle is detected, it is

55

I

resolved, and if the last transaction being waited for is

still active, the algorithm stops.

D. OPERATION OF THE ALGORITHM

The operation of the algorithm will be shown by

executing it on the example used in Chapter two. TI

migrates to site B and locks resource R2. It then migrates

to site C and locks resource R3. T4 locks resource R4 at

site D. At this point, the Lock Histories and Lock Tables

are:

Site A Site B Site C Site D

LH(T1): LH(Tl): LH(TI): LH(T4):
{IW(R2B)} {W(R2B), (W(R2B), {W(R4D)}

IW(R3C)} W(R3C)}
LT(R2B): LT(R3C): LT(R4D):
TI{W(R2B)} TI{W(R3C)} T4[W(R4D)}

TI now attempts to acquire resource R4. By step 1, an IL

entry is placed in LH(T1) and in LT(R3) at site C. As there

are no Intention Locks in LT(R3C), the WFS from site C is

collected (at this point in time, none exists), and an agent

of TI is created at site D, with TI "bringing" LH(TI):

{W(R2B), W(R3C), IW(R4D)}. Site D now applies step 2B1, and

places the IL entry in LT(R4D) and LH(TI). Then it executes

step 2B2 by combining the Lock Histories of T1 and T4. No

cycles are found, but as T4 is still active at site D, the

DDA is stopped. The current status of the Lock Tables and

Lock Histories is:

56

Site A Site B Site C Site D

[IW(R2B)} {W(R2B), {W(R2B), {W(R4D)}
IW(R3C)) WCR2C), LH(Tl):

IWCRJ4D)} {WCR2B),
WCR3C),
IW(RJ4D)}

LTCR2B): LT(R3C): LTCR4D):
T1(W(R2B)} T1(W(R3C), T4{W(R4D)I;

IW(R4D)} T1[IW(R4D))

T4 now determines that it needs to write into resource R3.

It applies step 1 and places IL entry in LH(T4) and LT(.R4D).

The Lock Table for R4 is now LT(R4D): T4(W(RJ4D),IW(R3C)I;

Tl{IW(RI4D)), and the Lock History for T4 is now LH(TLI):

(W(R4D), IW(R3C)}. It sees in LT(R4ID) that Ti is waiting

for R4, so it combines its Lock History with Ti's. This

reflects the cycle Tl-->T4-->T1, so a deadlock has been

detected.

57

V. ANALYSIS OF THE PROPOSED ALGORITHM

The operation of the proposed algorithm was shown in the

last chapter. In this chapter, an informal proof of

correctness of the algorithm will be presented, and then the

algorithm will be analyzed for robustness and efficiency.

A. INFORMAL PROOF OF CORRECTNESS

In general, a deadlock cycle can have many different

topologies. For the model of transaction execution used in

the proposed algorithm (migration of agents of

transactions), these different topologies can be loosely

grouped into four categories. Category A involves local

deadlocks in which all the resources and transactions

involved in the deadlock are local, i.e., located at one

site, and thus the transactions involved not have locked any

resources at other sites. Category B is the same as

category A, with the exception that the transactions are

nonlocal, i.e., they may have locked resources at other

sites. Deadlock : cycles in category C are cycles involving

only one transaction and one resource at each of two sites.

Category D is a generalization of category C deadlocks; any

number of transactions and resources may be involved at any

number of sites. For each category, it will be shown that

the algorithm detects all possible deadlocks in that

58

4

category, and that the algorithm does not detect "false"

deadlocks except in the case where a transaction which was

involved in a deadlock has aborted, but its agents have not

yet been notified. This will be done both for an

environment of no errors, and in an environment of the types

of errors discussed in Chapter two (lost messages and single

site failures.)

If all the transactions and resources involved in a

deadlock are located at the same site and none of the

transactions have locked resources at other sites, each

* transaction's Lock History will be an accurate and complete

snapshot of the locke placed by that transaction. If the

deadlock cycle length is two, the combination of the Lock

Histories in step 2B2 (level 1) will detect the cycle. If

the length of the cycle is greater than two, step 2B6 (level

2) will combine, for this category of deadlock cycles, the

Lock Histories of all the blocked or inactive transactions

at the site. This information will be a complete and

accurate global snapshot of the deadlock cycle, and hence

the deadlock will be detected.

Deadlocks in the second category are those in which all

the transactions and resources involved are at one site, but

the transactions involved may have locked resources at other

sites before creating the agent at this site. The argument

to show that all deadlocks in this category will be detected

by the proposed algorithm is essentially the same as the one

59

used for the first category. Since all the transactions

involved in the deadlock are currently at this site, their

Lock Histories are complete and accurate in so far as they

pertain to the deadlock cycle. It is possible, in the case

of concurrent execution of a transaction's agents, for an

agent involved in a deadlock to be unaware of resources

locked by other agents of that transaction which are

executing concurrently, and will probably still be active.

The only difference between this case and the preceding is

that the WFGs constructed by steps 2B2 and 2B6 may contain

information about other locks held by the transactions

involved, but the information concerning the deadlock cycle

will be present.

Deadlocks in the third category will be detected by

level 1 because a single Lock Table at each site holds

sufficient information to detect a deadlock cycle. If the

migrations occur simultaneously, the "Next" field of the

Lock Table of the requested resource would show an Intention

Lock on the other resource, and this cycle would be detected

by step 2B2. If the migrations occurred sequentially, the

second transaction would, before migrating, place an

Intention Lock in the Lock Table of its last locked

resource. The level I check of step 1B would cause a WFG to

be constructed which would reveal the deadlock cycle.

The fourth category of deadlock cycles is a

generalization of the third. Deadlock cycles in this

60

category may involve any number of transactions and

resources at any number of sites. A record is always kept

of the site to which a transadtion has migrated (in the

"Next" field of it's last locked resource at the current

site.) If level 2 cannot detect the cycle in step 2B6 with

information at that site, level 3 causes a WFS containing

this site's information to be sent to the site to which the

transaction has migrated. Steps 3 and 4 cause this process

to be continued, with each site adding additional

information, until a site contains enough information to

detect a deadlock cycle or determine that no deadlock

exists, regardless of the number of migrations made by a

transaction.

False deadlocks are an anomaly where a non-existent

deadlock cycle is detected by a deadlock detection

algorithm, and are usually a result of incorrect or obsolete

information. Since the proposed algorithm uses only the

latest copy of a transaction's Lock History for deadlock

detection purposes, the information used cannot be incorrect

4in the sense of invalid entries, although it may be

incomplete. This means that a Wait-For graph constructed

from incomplete versions of Lock Histories may have

insufficient information to detect a deadlock at that

particular level of detection activity or iteration of level

three activity, but it will not have incorrect information.

When a transaction which has agents at two or more sites

61

commits or aborts, however, it is possible that the commit

or abort messages to other agents of that transaction may be

delayed. Obviously, a transaction which is ready to commit

cannot have any of it's agents in a blocked state (and

therefore in a possible deadlock condition), so its agents

can either be only active or inactive. While inactive

agents may be being waited for by agents of other

transactions, no Lock History or Lock Table can show that an

agent of the transaction which is about to commit is waiting

for another transaction, so no false deadlocks can exist.

Therefore only the possibility of a transaction which is in

the process of aborting and thus causing a false deadlock to

be detected must be considered. Suppose an agent of a

transaction decides to abort, but before its abort message

reaches another agent of that transaction, a deadlock is

found involving that transaction. Technically, this could

be considered a false deadlock, since one of the

transactions involved has aborted, probably breaking the

deadlock cycle. If the deadlock cycle is complex, and the

proposed algorithm is performing level two or three

detection activity, the delays introduced in steps 2B4 and

2B6c should allow the abort message to arrive. For the very

rare occurences where the abort message does not arrive, it

would probably be more efficient to let the deadlock

detection algorithm resolve the (false) deadlock rather than

having the algorithm perform some explicit action (such as

62

[" delaying before resolving any detected deadlock cycle) each

time it detects a deadlock.

B. ROBUSTNESS ANALYSIS

Level one of the proposed algorithm appears to take a

pessimistic view concerning the occurrence of deadlock by

checking for it any time a remote resource is requested, or

a local resource is not available. The author believes that

the cost involved in this simple check is negligible when

compared to the cost of creating agents when they are

certain to become deadlocked, even when the probability of

deadlock is as low as reported in (Ref. 9]. Since cycles of

.length three or more are very rare, however, it is

advantageous to assume an optimistic viewpoint toward their

occurence. Thus a greater cost can be expended in checking

for them if we wait until the probability of their existence

is much higher.

The robustness of the proposed algorithm can be compared

to that of the algorithms analyzed in Chapter three by

executing it on the example used for that analysis.

Additionally, for a more thorough demonstration of the

operation of the algorithm, the actions taken by each step

will be shown.

At time t1, transaction Ti at site A requests resource

R2. Step 1A places an IW (Intention Write) lock in LH(T1).

Since Ti currently holds no resources, no Lock Table entries

63

are made, and step 1B is skipped. Step 1C causes an agent

of T1 with LH(T1):IW(R2B) to be created at site B. At site

B, step 2 is applied. R2 is available, so the Write Lock is

placed in LT(R2B) and in LH(TI) at site B. At time t2, T4

requests R4, which is local. Step 2A is applied by site D,

and the Write Lock is placed in LH(T4) and in LT(R4D). At

time t3, TI at site B requests R3. Step 1A places an IW

Lock entry in the "Next" field of Ti's entry in LT(R2B), and

in LH(TI). No other transactions are waiting for R2, so

step IC causes an agent of Ti with LH(TI):W(R2B),IW(R3C) to

be created at site C. At site C, R3 is available, so step

2A places the lock in LT(R3C), and modifies the IW(R3C)

entry to W(R3C) in the copy of LH(TI) at site C.

At time t4, TI requests R4. Site C applies step 1A and

places an IW(R4D) in the "Next" fi.eld of Ti's entry in

LT(R3C), and in LH(TI). Since no transactions are waiting

for R3, site C causes an agent of TI with LH(TI):

W(R2B),W(R3C),IW(R4D) to be created at site D. At site D,

R4 is not available, so step 2B places an IW(RD) entry for

TI in LT(R4D) and in LH(TI). A WFG is constructed from the

Lock Histories of T1 and T4. No cycles are detected, and T4

(which has the lock on R4) is still at site D and active, so

deadlock detection activity stops. Figure 8 shows the[l status of appropriate Lock Tables and Lock Histories at all

four sites at this time.

64

Site A Site B Site C Site D

LH(T1): LH(T1): LH(T1): LH(Tl):
{IW(R2B)} {W(R2B), {W(R2B), {W(R2B),

IW(R3C)} W(R3C), W(R3C),

LT(R2B): IW(R4D)} IW(R4D)}
TI{W(R2B), LT(R3C): LH(T4):{W(R4D)}

IW(R3C)} TI{W(R3C), LT(R4D):
IW(R4D)} T4{W(R4D)},

TI{IW(R4D)}

Fig. 8 -- Status for proposed algorithm

Now at time t6, T4 requests R3. Site D applies rule 1A

by placing an IW entry in LH(T4) and in the "Next" field of

T4's entry in LT(R4). It notices that TI is waiting for R4,

so a WFG is constructed using the Lock Histories of Ti and

"! T4. This graph is shown in Figure 9. As can be seen, a

deadlock is detected.

T4 T1

R4 R3 R2

Fig. 9 -- WFG reflecting deadlock cycle

In this example, no messages were used specifically for

the deadlock detection, so the effect of a lost message on

the DDA cannot be examined. Since three of the previously

analyzed algorithms did require separate DDA messages,

however, this algorithm is therefore less susceptible to

this type of failure. If one of the messages which created

an agent were lost, no deadlock would have occured.

65

Since agents are created at the sites where the required

resources are located, and level one detection activity is

performed any time a resource is requested, this algorithm

allows only sites of type b and d which were discussed in

Chapter three. Type b sites are those which have a

transaction involved in a deadlock and the site is involved

in detection, and type d sites are those which have a

resource involved in the deadlock and the site is involved

in the detection. In fact, for the version of the proposed

algorithm presented in Chapter four, these two types are the

same (a site involved in detection will have both a

transaction or agent and a resource involved.) The timing

and location of a single site failure will determine the

behavior of the algorithm. If sites A, B or C failed before

creating agents at B, C and D respectively, no deadlock

would result. If they failed after having an agent created

at the next site, deadlock detection activity would not be

affected. If site D failed before an agent for Ti was

created, no deadlock would be created. If it failed after

creating the agent but before the deadlock was detected, it

would not detect the deadlock, but the site failing would in

a sense break the deadlock.

It appears that this version of the proposed algorithm

is at least as robust as the Tsai-Belford algorithm, and

more robust than the other three algorithms analyzed, for

the example used. Because of the three levels of detection

66

activity in the proposed algorithms, inter-site messages for

deadlock detection are only used for deadlock cycles of

length three or greater, and depending on the topology of

the deadlock cycle, messages are not even required for many

of those. In the majority of deadlock occurences, then,

even this least robust versicn of the proposed algorithm

appears to be more robust than any of the published

algorithms analyzed in Chapter three.

C. PERFORMANCE ANALYSIS

To check the efficiency (in terms of inter-site

messages) of the algorithm, it was executed on several

deadlock scenarios. The algorithm of Obermarck [Ref. 1 was

also executed on these scenarios. Obermarck's algorithm was

chosen for this comparison because it is being implemented

in IBM's developmental distributed database system, System

R*. Since the majority of deadlocks which will occur will

be of length two or three, three test cases involving

deadlock cycles of those lengths will be used for the

comparison. It is assumed that the transactions are

lexically ordered Ti < T2 < T3, for Obermarck's algorithm.

These cases are shown in Figure 10. TI originated at site A

and holds a lock on R1, and T2 originated at site B and

holds a lock on R2. In cases two and three, T3 originated

at site C and holds a lock on R3. In case one, T1 has

migrated to site B and requested R2, while T2 has migrated

67

to site A and requested RI. In case two, Ti has migrated to

site B and requested R2, T2 has migrated to site C and

requested R3, and T3 has migrated to site A and requested

RI. In case three, TI has migrated to site C and requested

R3, T2 has migrated to site A and requested RI, and T3 has

migrated to site B and requested R2.

i T31 T1T T2

T)f T 2 R' T2 Ti R1~ T2 T34

Rtl/ RV S e ite A R2

T3 T2T3 1
Site A Site B 1/Site B tSite B

R3

Site C Site C

Case 1 Case 2 Case 3

Fig. 10 -- Deadlock cycles used in performance analysis

For case one, where the deadlock cycle is of length two,

the proposed algorithm requires no additional messages for

deadlock detection, while Obermarck's algorithm requires one

message. For case two, with a deadlock cycle of length

three, Obermarck's algorithm requires one message. The

number of messages required by the proposed algorithm is

dependent on the timing of the transaction migrations. If

the migrations occur at different times, no messages are

required. If, however, the migrations happen to occur

simultaneously, six messages are required. A similar

68

situation occurs in case three. If the migrations occur

simultaneously, six messages will be required. If they

occur at different times, however, no messages are required.

Obermarck's algorithm requires two messages.

It is apparent that in the majority of cases (since

cycles of length two are more common than those of length

three), no messages are required for the proposed algorithm.

The worst case scenario for the proposed algorithm, however,

is significantly worse than Obermarck's, for the version of

the proposed algorithm presented here. If Obermarck's

optimization were used with the proposed algorithm, it would

never need more messages than Obermarck's algorithm, and

would usually require fewer.

The amount of time used in level one activity is

minimal, since only a single resource's Lock Table is used

to determine the set of transactions whose Lock Histories

must be combined. Even with level two, the time required to

construct a WFG using all Wait For information at a site

should take no longer than the construction of a WFG in

Obermarck's algorithm. In [Ref. 1, Obermarck does not

discuss the factors which trigger deadlock detection, but

for thls analysis, it is assumed that it is triggered X

units of time after a transaction waits for a resource. His

algorithm constructs a WFG at each iteration of the deadlock

detection cycle, regardless of the potential size of the

cycle. Since the proposed algorithm performs a comparable

69

construction only when cycles of length two have essentially

been eliminated as a possibility, it appears that the

proposed algorithm will require less time to execute

whenever it is invoked.

70

7

VI. CONCLUSIONS

The proposed algorithm has been shown to be at least

competitive with existing algorithms for deadlock detection

in distributed computing systems. The proposed algorithm is

more efficient at detecting the majority of deadlocks which

can occur than the other deadlock detection algorithms

analyzed. It's performance is worse, however, for those

deadlock cycles of length three or greater which are caused

by simultaneous migration of all the transactions involved.

Inasmuch as deadlock cycles of length three or more are

rare, and the probability of all the transactions involved

migrating simultaneously appears to be low, this extra cost

should be neglibible when compared to the savings caused by

the algorithm for the majority of deadlock cycles. If it is

felt necessary, an optimization scheme similar to

Obermarck's lexical ordering of transactions [Ref. 1] could

be included in step 3B, but this requires a global mechanism

for ordering all- transactions in a system.

The proposed algorithm has been shown to be more robust

than the other algorithms analyzed, primarily because it

very rarely uses inter-site messages for deadlock detection,

K and because of the model of transaction execution it

assumes. Resources can only be locked by agents at that

site, and hence a resource cannot be permanently locked by

71

virtue of the site where the transaction which holds the

lock is located failing. A site failure with this model of

transaction execution wil break the deadlock.

The proposed algorithm can be modified by combining

levels one and two, if the number of resources and

transactions in the system are small, and therefore the cost

of creating WFG's at level 2 would be comparable to the cost

of the level 1 WFG construction. The cost of construction

of the WFG's used by the algorithm could be saved by not

constructing them at all, but merely examining the WFS's and

Lock Histories, since all required information is contained

in them. The delays which have been built-in to the

algorithm can be adjusted empirically to determine the

optimum delays for a particular implementation.

It is concluded that the proposed algorithm as presented

in Chapter four is more robust and efficient than existing

deadlock detection algorithms for distributed computing

systems, and that its performance can be made even better

with minor modifications. It is also a good basis for more

major modifications such as having level 3 detection done by

the Sites of Origin of the transactions involved.

72

LIST OF REFERENCES

1. IBM Research Division Research Report RJ2845 (36131),
Global Deadlock Detection Algorithm, by R. Obermarck,
June 1980.

2. Tandem Technical Report TR81.3, The Transaction Conceot:
Virtues and Limitations, by J. Gray, June 1981.

3. Massachusetts Institute of Technology Technical Report
TR-MIT/LCS/TR-185, Deadlock Detection in Comouter
Networks, by B. Goldman, September, 1977.

4. IBM Research Division Research Report RJ2188(30001),
Notes on Data Base Onerating Systems, by J. Gray,
February, 1978.

5. Menasce, D. and Muntz, R., "Locking and Deadlock
Detection in Distributed Data Bases," IEEE Transactions
on Software Engineering, v. SE-5, No. 3, P. 195-202, May
1979.

6. Isloor, S. and Marsland, T., "An Effective 'On-line'
Deadlock Detection Technique for Distributed Data Base
Management Systems," Proceedings COMSAC, p. 283-288,
1978.

7. Gligor, V. and Shattuck, S., "On Deadlock Detection in
Distributed Systems," IEEE Transactions on Software
Engineering, v. SE-6, p. 435-440, September 1980.

8. Tsai and Belford, G., "Detecting Deadlock in a
Distributed System," Proceedings INFOCOM, 1 April 1982.

9. Gray, J., Homan, P., Korth, H. and R. Obermarck, "A
Straw Man Analysis of the Probability of Waiting and

V Deadlock in a Distributed Database ystem,' paper
presented at 5th Berkeley Workshop, February 1981.

73
I -

k

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22314

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93940

3. Department Chairman, Code 52Bz
Department of Computer Science
Naval Postgraduate School
Monterey, California 93940

4. Dushan Badal, Code 52Zd 2
Department of Computer Science
Naval Postgraduate School
Monterey, California 93940

5. William Shockley, Code 52Sp
Department of Computer Science
Naval Postgraduate School
Monterey, California 93940

6. LCDR Michael T. Gehl, USN 2
Box 436
Dow City, Iowa 51528

7. CAPT Peter Jones, USMC
Marine Corps Central Design and

Programming Activity
Marine Corps Development and

Education Command
Quantico, Virginia 22134

8. CDR Geir Jevne
SMC 1675
Naval Postgraduate School
Monterey, California 93940

74

